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Abstract

The strategic importance of commitment in bargaining is widely ac-

knowledged. Yet disentangling its role from key features of canonical

models, such as proposal power and reputational concerns, is difficult.

This paper introduces a model of bargaining with strategic commit-

ment at its core. Following Schelling (1956), commitment ability stems

from the costly nature of concession and is endogenously determined

by players’ demands. Agreement is immediate for familiar bargainers,

modelled via renegotiation-proofness. The unique prediction at the high

concession cost limit provides a strategic foundation for the Kalai bar-

gaining solution. Equilibria with delay feature a form of gradualism in

demands.
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1 Introduction

If two agents seek to divide some surplus, what division will they agree on and

when and how? This set of questions, that I collectively label the bargaining

problem, is key to a vast range of economic interactions. Economic models rely

on the strategic theory of bargaining to resolve it, either directly or indirectly

by informing the appropriate choice of a bargaining solution.

Strategic models of bargaining that allow negotiations to unfold over time

typically have at their core either the alternating-offers model of Rubinstein

(1982) or the reputation model of Abreu and Gul (2000). Schelling (1956, 1960)

proposed a third approach. As summarized in Crawford (1982), Schelling views

the bargaining process as a struggle between players to commit themselves to

—that is, to convince their opponent of their inability to retreat from —ad-

vantageous bargaining positions. Schelling’s own treatment of his approach

was impressionistic and by way of examples. Subsequent work has either de-

veloped the theory in static environments or focused on evaluating the role

of commitment while relying on one of the two canonical models mentioned

above to resolve the underlying bargaining problem.1

This paper presents a formalization of Schelling’s theory with an infinite-

horizon model of bargaining with complete information. The objective is to

characterize the extent to which this theory, built on the use of strategic com-

mitments, resolves the bargaining problem and how, and furthermore establish

conditions under which the model’s predictions are adequately summarized by

some bargaining solution.

The model builds on two key elements of Schelling’s theory. First, a bar-

gainer may find it costly to back down from a stated demand and this is the

source of her commitment ability. Second, the commitment ability is neverthe-

less endogenous, in that it depends on the demands. A less aggressive demand

weakens the opponent’s commitment ability by allowing more room for her to

1See for example, Crawford (1982), Muthoo (1996), Ellingsen and Miettinen (2008) and
Dutta (2012) for the first and Fershtman and Seidmann (1993), Compte and Jehiel (2004),
Wolitzky (2012) and Basak and Deb (2020) for the second. Ellingsen and Miettinen (2014)
consider a dynamic model of a hybrid nature that I discuss in detail in section 5.
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back down. By contrast, a demand that leaves an opponent’s back against the

wall only ensures the latter’s commitment.

In the model, the bargainers simultaneously announce demands. If the

demands are compatible, bargaining ends on those terms. If incompatible, the

players decide whether to stick to their demand or concede to the opponent’s

offer. Concession incurs an additional cost which is increasing in the conceded

amount. If neither player concedes, then the current period of bargaining ends

and the next period begins with a fresh round of demands. The game proceeds

in this manner until either compatible demands or a concession following in-

compatible demands. The bargainers are impatient, as captured by constant

discount factors. I focus on subgame perfect equilibria with pure strategies in

the demand stage (henceforth SPE).

The model can be seen as a variant of the infinite horizon version of the

Nash Demand Game (henceforth IH-NDG). While in the latter, incompatible

demands end the current round of bargaining, in the present model bargainers

get a chance to concede. Indeed, if the concession costs are made arbitrarily

high, then concession is effectively ruled out and the IH-NDG obtains at the

limit.

The model predictions depend on two sets of parameters, namely the dis-

count factors and concession cost functions. In any SPE outcome, the bargain-

ers eventually agree upon an efficient division of the surplus, following some

delay, if any. In contrast to common dynamic bargaining models, the range of

efficient divisions of the surplus that can arise in equilibrium is linked to the

maximum delay the equilibrium accommodates following any history. Delay,

while permitted under SPE, has an upper bound.

Renegotiation-proof SPE, used to model familiar bargainers, feature no

delay and an exact characterization obtains for the corresponding set of surplus

divisions. This leads to a key finding of the paper. As the marginal concession

costs are made arbitrarily high, the set of renegotiation-proof SPE outcomes

converges to selecting a unique efficient outcome in the limiting IH-NDG.

This outcome is identical to that of the Kalai bargaining solution (see Kalai

(1977)) with its proportion determined by the discount factors and a limit ratio
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of the concession cost functions. Therefore, not only does the formalization

of Schelling’s theory fully resolve the bargaining problem, it also provides

a strategic foundation for the Kalai bargaining solution. Furthermore the

parameters of the non-cooperative model select the appropriate bargaining

solution from the family of solutions characterized in Kalai (1977).

Markov perfect equilibria (which may violate renegotiation-proofness) can

exhibit delay. In a natural way, such equilibria with delay yield a form of

gradualism, the feature in which bargainers start with extreme demands that

soften over time. Finally (and surprisingly), the set of stationary Markov

perfect equilibrium outcomes coincides with the set of renegotiation-proof SPE

outcomes, despite the latter allowing arbitrarily history dependent strategies.

As Binmore, Osborne and Rubinstein (1992) states, The ultimate aim of

what is now called the “Nash program” (see Nash 1953) is to classify the var-

ious institutional frameworks within which negotiation takes place and to pro-

vide a suitable “bargaining solution” for each class. This paper contributes

to this literature by making a case for the Kalai bargaining solution in en-

vironments in which commitment ability due to concession costs is salient.2

Binmore, Rubinstein and Wolinsky (1986) establish a robust connection be-

tween the alternating-offers model and the Nash bargaining solution. Studies

on commitment that rely on the alternating-offers model, such as Muthoo

(1996), find similar support for the (asymmetric) Nash bargaining solution.

Relying on the struggle to commit itself to resolve the bargaining problem, as

the current paper shows, leads instead to the Kalai bargaining solution. This

is an important distinction. The appropriate choice of a bargaining solution is

not merely a game-theoretic curiosity. Aruoba, Rocheteau and Waller (2007),

for instance, show that the choice of bargaining solution matters both qualita-

tively and quantitatively for questions of first-order importance in monetary

economics.

To the best of my knowledge, Dutta (2012) and Hu and Rocheteau (2020)

are the only other papers that provide strategic bargaining foundations for the

Kalai bargaining solution. Hu and Rocheteau (2020) rely on the alternating-

2Examples of such environments are described in section 5.1.
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offers model. They show that if the surplus is divided into N parts and in each

of N rounds players engage in Rubinstein bargaining over one of these parts,

then the outcome corresponds to the Kalai bargaining solution as N tends to

infinity. While theoretically insightful, the procedure with large N is difficult

to descriptively align with typical bargaining narratives.

Dutta (2012) is the static (one-period) version of the current model and

captures a qualitatively similar role for the concession costs, in that higher

costs benefit the bargainer. It shares the unrealistic feature of the Nash de-

mand game in ruling out future negotiations following a single round of dis-

agreement, and as a result has no role for discount factors.

Given the limit uniqueness result of the static model in Dutta (2012), it is

natural to expect (with some work) a similar result in the dynamic model un-

der stationary strategies. A novel and surprising finding in the current paper is

that the Kalai solution arises as the unique limit even under the assumption of

renegotiation-proofness, which allows for arbitrarily history dependent strate-

gies.3 There is no reason to expect renegotiation-proof outcomes to coincide

with stationary ones in dynamic bargaining games. Indeed, as discussed in 3.1,

the acute multiplicity (of surplus division outcomes) in the multilateral version

of the Rubinstein bargaining game persists unabated under the assumption of

renegotiation-poofness, while stationarity delivers a unique result. The finding

that the two sets of outcomes coincide in the current model is the result of the

specific structure of its SPE, discussed in section 2.1.

The rest of the paper is as follows. In section 2, I introduce the general

model and show how all SPE have a simple structure. In section 3, I focus on a

linear specification, which allows for closed form characterizations of outcomes

under SPE and those with the further restrictions of renegotiation-proofness

and Markov perfection. In section 4, I return to the general model, characterize

SPE outcomes categorized by maximum permissible delay, including the set

of renegotiation-proof SPE outcomes and establish the link with the Kalai

solution. A discussion of the intuition and some applications follow. In section

5, I discuss some key features of the model and other related literature.

3The intuition behind this is discussed in section 4.2.
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2 The Model

Two players, 1 and 2, play an infinite horizon game to split a pie of size 1.

In period t ∈ N ≡ {1, 2, 3, . . .}, if the bargaining problem is still unresolved,

each player i ∈ {1, 2} announces a demand zi ∈ [0, 1]. The announcements are

simultaneous. For a given demand profile z = (z1, z2), let d(z) = z1 +z2−1. If

the demands are compatible (d(z) ≤ 0) then the game ends with both players

receiving their own demands. The resulting payoff profile is (u1(z1), u2(z2)),

where ui is the payoff function for player i.

Following incompatible demands (d(z) > 0), the bargainers enter a conces-

sion stage. Here the players simultaneously decide whether to stick to their

demands or back down and accept the other’s offer. Backing down comes at

a cost which is a function of the conceded amount, the difference between the

initial demand and the accepted amount, zi − (1 − z−i) = d(z), and is cap-

tured by the concession cost function ci. If both players stick to their demand

then the bargaining problem remains unresolved and moves to the next period.

This concession stage game is represented in the table below.

Table 1: Concession Stage following Incompatible Demand Profile z
Accept (A) Stick (S)

A u1(1− z2)− c1(d(z)), u2(1− z1)− c2(d(z)) u1(1− z2)− c1(d(z)), u2(z2)

S u1(z1), u2(1− z1)− c2(d(z)) u1(0), u2(0)

As long as some player chooses A the game ends this period with the associ-

ated payoffs in the table, otherwise it moves to period t + 1.4 The following

assumptions hold throughout the paper.

Assumption 1 For i ∈ {1, 2}, ui : [0, 1] → R+ is a strictly increasing, con-

cave and continuously differentiable function with ui(0) = 0.

Assumption 2 For i ∈ {1, 2}, ci : R+ → R+ is a strictly increasing, un-

bounded above and continuously differentiable function with ci(0) = 0.

4Following AA in the concession stage, d(z) is left on the table. Alternative specifications
of this outcome that additionally split d(z) between the bargainers in some way leave all
results unchanged.
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A history of play that leads to the beginning of period t + 1 with t ∈ N,

denoted as ht, is a sequence of t incompatible demand profiles with (S, S) in

the corresponding concession stages, (z1, SS, z2, SS, . . . , zt, SS). Let H t be

the set of all such t-period histories, with the null history H0 = {h0} and

H = ∪∞t=0H
t. A history of play that leads to the concession stage in period

t, denoted as ht
′
, is an element of H t−1 followed by an incompatible demand

profile zt. Let H t′ be the set of all such t-period histories and H ′ = ∪∞t=1H
t′ .

A pure strategy for player i is a function σi : H ∪ H ′ → [0, 1] ∪ {A, S} such

that σi(h) ∈ [0, 1] for h ∈ H and σi(h) ∈ {A, S} for h ∈ H ′. The subgame

following history h ∈ H ∪H ′ is labeled g(h).

Given a history ht ∈ H, a strategy profile σ = (σ1, σ2) determines the

period n > t when bargaining ends in the subgame g(ht), with payoffs in that

period of y = (y1, y2), where y = (0, 0) if n = ∞. Call (y, n− t) the outcome

of the game g(ht) under σ. A strategy profile σ with outcome (y, n − t) in

the subgame g(ht) yields the discounted payoff of δn−t−1i yi to player i at the

beginning of the subgame, where δi ∈ (0, 1) is player i’s discount factor.

2.1 Subgame Perfect Equilibria

To analyze its content, I focus on pure strategy subgame perfect equilibria of

the model. Subsequently, for expositional ease, I will refer to these simply as

subgame perfect equilibria or SPE. Infinite horizon games with simultaneous

moves typically feature a vast multiplicity of SPE with a sense of anything

goes. The current model features multiplicity too. Nevertheless, the following

straightforward yet useful lemma shows that all such equilibria have a simple

structure. Exactly compatible demands imply d(z) = 0.

Lemma 1 A subgame perfect equilibrium at any period must feature either

(a) exactly compatible demands, or

(b) incompatible demands followed by both players choosing Stick.

Proof. Consider a period in which incompatible demands (z) are followed by

some action profile other than (S, S) in the concession stage. Then, as the

payoff matrix in table 1 shows, there must be some player i who receives a
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payoff strictly less than ui(1 − z−i) and is strictly better off by deviating to

the compatible demand 1− z−i instead of the original zi.

Next, given a period with compatible demands that add up to less than

1, the player with the lower demand, say i, is strictly better off demanding

1− z−i instead.

In other words, any SPE involves some rounds of delay, if any, via incompatible

demands, followed by an agreement on an efficient division of the surplus.

Dynamic bargaining games featuring multiple SPE typically have the fol-

lowing feature.5 The range of efficient SPE outcomes constitutes the first-order

multiplicity. These rely on history-dependent strategies but do not require

strategy profiles involving delay. This first-order multiplicity is used, through

appropriate history-dependent strategies, to generate varying lengths of delay,

the second-order multiplicity. In the current model, delay is on a more equal

footing with the set of efficient SPE outcomes. Limiting the length of delay

permissible in an SPE limits the range of efficient outcomes that can arise in

equilibrium. The following classification of SPEs allows for characterization

results that capture this feature.

Definition 1 An SPE σ is called an SPE with maximum delay m if for any

subgame g(ht), ht ∈ H, it generates an outcome (y, n− t) where n− t−1 ≤ m.

The characterization results that follow rely on the stationary structure of

the model. To this end, for any h ∈ H, let Om(h) denote the set of outcomes

of SPE with maximum delay m in the subgame g(h). Now define

Bm ≡
{
z|(u(z), t) ∈ Om(h0)

}
to be the set of all surplus divisions that can arise as the outcome of some

SPE with maximum delay m in the bargaining game. Due to the stationary

5See, for instance, Sutton (1986), Avery and Zemsky (1994) and Merlo and Wilson
(1995).
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structure of the game and definition 1, it follows that

Bm = {z|(u(z), t) ∈ Om(h)} , for all h ∈ H.

Finally observe that by lemma 1, z ∈ Bm ⇒ z1 + z2 = 1.

3 The Linear Model

In this section, I analyze the following specification of the bargaining model.

∀i ∈ {1, 2}, ui(zi) = zi and ci(d(z)) = kid(z) for some ki > 0.

This linear specification retains the strategic tradeoffs of the general model

while allowing for closed-form characterizations of equilibrium outcomes.

The following lemma captures the key restriction that strategic consider-

ations about commitment impose on the set of compatible demands in equi-

librium. In particular, the compatible demands must be such that neither

bargainer can raise her own demand and force her opponent to back down

in the resulting concession stage. “Forcing” here requires the (unique) domi-

nance solvable outcome of the concession game to have the deviator stick to her

demand while her opponent concedes, irrespective of the equilibrium continu-

ation play. This restriction, while stated below for SPE with maximum delay

n∗, plays an essential role in characterizing all the classes of SPE considered

in this paper.

Lemma 2 Suppose σ is a pure strategy profile with σ(ht−1) = z and
∑2

i=1 zi =

1 for some ht−1 ∈ H. If for some i ∈ {1, 2}, there exists z−i < ẑ−i ≤ 1 such

that

1− zi − k−i(zi + ẑ−i − 1) < δn−iz̃−i (1)

and

1− ẑ−i − ki(zi + ẑ−i − 1) > δni z̃i (2)

for all z̃ ∈ Bn∗ and 1 ≤ n ≤ n∗ + 1, then σ is not an SPE with maximum

delay n∗.
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Proof. Without loss of generality, set i = 1. Now note that bargaining failure

in period t leads to g(ht) beginning in the next period. Since σ is an SPE

with maximum delay n∗, and by lemma 1, the outcome (x,m) of this subgame

must satisfy x ∈ Bn∗ and m ≤ n∗+1. Suppose one such continuation outcome

is given by (z̃, n). Now consider a deviation ẑ2 from the compatible profile z

which satisfies both inequalities 1 and 2 for this continuation profile.

Table 2: Augmented Concession Game following deviation ẑ2 from Profile z
A S

A 1− ẑ2 − k1(z1 + ẑ2 − 1), 1− z1 − k2(z1 + ẑ2 − 1) 1− ẑ2 − k1(z1 + ẑ2 − 1), ẑ2
S z1, 1− z1 − k2(z1 + ẑ2 − 1) δn1 z̃1, δ

n
2 z̃2

The deviation leads to the augmented game above in the concession stage,

with (S, S) yielding a discounted payoff consistent with the continuation out-

come (z̃, n). Due to inequality 1, in this concession stage S strictly dominates

A for player 2. Inequality 2 in turn ensures that given player 2’s choice of S,

player 1 strictly prefers to play A. In other words, the unique dominance solv-

able outcome in the augmented concession game is (A, S). Furthermore this

outcome gives player 2 a strictly higher payoff than z2. So, if there exists a ẑ2

such that no matter what the continuation profile (consistent with σ being an

SPE with maximum delay n∗) the two inequalities above are always satisfied,

then ẑ2 is a profitable deviation from z and therefore σ is not an SPE.

To see how the constraint identified in lemma 2 has bite, consider the

compatible demand profile (1, 0). Fix any set of discount factors and marginal

concession costs. Notice that the highest payoff player 1 gets if bargaining

fails this period is δ1. By choosing a ẑ2 > 0 close enough to 0, player 2 can

ensure that conditional on 2 choosing S, 1 would rather concede and get a

payoff arbitrarily close to 1 rather than settle for the lower amount of δ1. By

contrast, player 2 has no room for backing down since any concession leads

to a negative payoff. So irrespective of the continuation strategy, following a

deviation to ẑ2, her dominant strategy would be S. In summary, player 2’s

deviation from (1, 0) guarantees her a positive payoff. This rules out (1, 0) as

an equilibrium outcome.
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To obtain a more complete characterization, the exercise above is extended

to identify the most favourable equilibrium surplus division (element of Bn∗)

for player i.6 The restriction to SPE with maximum delay n∗ ensures that in

any continuation game the eventually agreed upon division must also belong

to Bn∗ . This recursive structure yields the following characterization.

Proposition 1 If (z, t) is the outcome of a subgame perfect equilibrium with

maximum delay n∗, then

1− δ1
1− δn∗+1

2

k2
1 + k1

≤ z2
z1
≤ 1− δn∗+1

1

1− δ2
1 + k2
k1

. (3)

Proof.

Let z∗i = supz∈Bn∗ zi. Now suppose for some exactly compatible demand

profile z, there exists ẑ2 such that

1− z1 − k2(z1 + ẑ2 − 1) < δn
∗+1

2 (1− z∗1) (4)

and

1− ẑ2 − k1(z1 + ẑ2 − 1) > δ1z
∗
1 . (5)

Then such a ẑ2 also satisfies inequalities 1 and 2 for all z̃ ∈ Bn∗ and 1 ≤ n ≤
n∗ + 1, since for any such z̃ and n it follows that δn

∗+1
2 (1 − z∗1) ≤ δn2 z̃2 and

δ1z
∗
1 ≥ δn1 z̃1. Therefore, by lemma 2, z cannot arise in any SPE (i.e., z 6∈ Bn∗).

Now since z∗i = supz∈Bn∗ zi it must be that we cannot find such a ẑ2 for

the compatible profile z = (z∗1 , 1− z∗1). So there cannot be a ẑ2 > 1− z∗1 which

satisfies both

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn
∗+1

2 (1− z∗1), and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δ1z
∗
1 .

6This step is similar in spirit to the approach taken in Shaked and Sutton (1984) to
solve the alternating-offers model.
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These inequalities simplify to

ẑ2 >
(1− z∗1)(1 + k2 − δn

∗+1
2 )

k2
and ẑ2 < 1− (k1 + δ1)z

∗
1

1 + k1
.

Therefore such a ẑ2 cannot exist only if

(1− z∗1)(1 + k2 − δn
∗+1

2 )

k2
≥ 1− (k1 + δ1)z

∗
1

1 + k1

⇒(1− z∗1)(1− δn∗+1
2 )

k2
≥ z∗1(1− δ1)

1 + k1

⇒ 1− δ1
1− δn∗+1

2

k2
1 + k1

≤ 1− z∗1
z∗1

A symmetric argument establishes

1− δ2
1− δn∗+1

1

k1
1 + k2

≤ 1− z∗2
z∗2

which transforms to
z∗2

1− z∗2
≤ 1− δn∗+1

1

1− δ2
1 + k2
k1

.

To conclude the proof note that

z ∈ Bn∗ ⇒ 1− z∗1
z∗1

≤ z2
z1
≤ z∗2

1− z∗2
.

The result confirms Schelling’s insight about weakness being a strength,

in that higher marginal concession costs generate better equilibrium outcomes

for the bargainer. Greater patience is similarly beneficial. This preserves a key

implication of the canonical bargaining models. The result also delivers a sim-

ple way to classify equilibrium surplus divisions on the basis of the maximum

anticipated delay following any history. This in turn clarifies how limiting

the maximum delay permissible in an SPE restricts the range of equilibrium

efficient outcomes.

Some important questions about SPEs remain unanswered. Is the amount
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of delay permitted in an SPE bounded? Can a sharper necessary condition be

obtained for all SPEs? Is there a general sufficiency condition/existence result

for SPEs? The next three results answer these in the affirmative.

Delay requires incompatible demands on the equilibrium path. A bargainer

may aim to do better in two ways. Deviate to a compatible demand, or make

a milder but still incompatible demand which forces a concession from the

opponent. In an SPE such deviations must be unprofitable. This is precisely

what bounds the amount of delay. Figures 1 and 2 describe these strategic

considerations. The figures depict both the space of demands and payoffs,

with player 1’s demand (payoff) on the x-axis and player 2’s on the y-axis.

AB is the set of efficient demands (payoffs). Due to discounting, all payoffs

must lie on or in the triangle AOB.

(a) (b)

Figure 1

Now consider an SPE with delay and payoff profile w = (δn1 z1, δ
n
2 z2) as in

figure 1a. By lemma 1 this SPE involves n rounds of incompatible demand

profiles followed by the exactly compatible demand profile z. In this SPE, the

period 1 incompatible demand profile must lie within the rectangle with w′

and C at opposite corners. For all other incompatible demand profiles some

player is strictly better off by deviating to a compatible demand. The arrows

from demand profiles z′ and z′′ describe such profitable deviations.

Figure 1b describes the dominance solvable outcome of the (augmented)
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concession game in a given period with continuation payoff fixed at some w (see

table 3 below), for all incompatible demand profiles. For instance, following a

demand profile in AHID, in the resulting concession game with continuation

payoff profile w, the dominance solvable outcome is (S,A). Both (S,A) and

(A, S) are Nash equilibria following demand profiles in HJI. DE and FG are

the indifference lines that graph 1 − z1 − k2(z1 + z2 − 1) = w2 and 1 − z2 −
k1(z1 + z2 − 1) = w1, respectively.

Table 3: Augmented Concession Game following Incompatible Profile z
A S

A 1− z2 − k1(z1 + z2 − 1), 1− z1 − k2(z1 + z2 − 1) 1− z2 − k1(z1 + z2 − 1), z2
S z1, 1− z1 − k2(z1 + z2 − 1) w1, w2

Figure 2

In figure 2 LM represents the indifference line for player 2 if she faces her

best equilibrium continuation payoff. AQ represents the indifference line for

player 1 if she faces her worst possible continuation payoff. This means that

any given equilibrium continuation payoff would generate indifference lines for

players 1 and 2 to the right of LM and to the left of AQ, respectively, such as

RS and NP (from continuation payoff w). Therefore incompatible demands

in the region ATL lead to (S,A) irrespective of equilibrium continuation play.
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Recall the strategy profile with delay and payoff profile w = (δn1 z1, δ
n
2 z2) and

suppose both players demand 1 in the first period. Player 1 can deviate from

(1, 1) to some point on KL and force 2 to concede, for a higher payoff.7 Notice

that such a profitable deviation exists as long as the continuation payoff to

player 1 is less than the amount at L. It does not exist, for instance, for

continuation profiles such as w̃, which involves less delay. This is the feature

that bounds the amount of delay in an SPE.

Let OSPE be the set of all SPE outcomes and

B∗ ≡ {z|(z, t) ∈ OSPE}

the set of all surplus divisions in such outcomes.

Proposition 2 Suppose kj(k−j − 1) > 1 for j ∈ {1, 2}. If (x, t) is an SPE

outcome with t > 1, then x ∈ B∗ and for i ∈ {1, 2}

δt−1i xi ≥
1− δ−iz∗−i

1 + k−i
(6)

where z∗−i = supz∈B∗ z−i.

It is simple to compute a bound from the result without any further knowledge

about the set of SPE outcomes, B∗. For instance, there can be no SPE with

delay t̃−1 if δt̃−1i < (1−δ−i)/(1+k−i) for some i ∈ {1, 2}. Of course, knowledge

of bounds on the set of efficient SPE outcomes delivers a tighter bound on SPE

delay.

Proposition 1 describes how the length of delay permissible in an SPE

bounds the set of efficient outcomes that can arise in equilibrium. Proposition

2 captures how the set of efficient equilibrium outcomes limits the maximum

delay in an SPE. The next result combines these two results to obtain a nec-

essary condition for SPE outcomes.

7Similar profitable deviations exist from any point in the w′C rectangle.
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Proposition 3 Suppose ki(k−i − 1) > 1 for i ∈ {1, 2}. If (z, t) is a subgame

perfect equilibrium outcome, then

min

{
1− δ1
1− δ2

k2
1 + k1

,
1 + k2
k1

(1− δ1)
}
≤ z2
z1
≤ max

{
1− δ1
1− δ2

1 + k2
k1

,
k2

1 + k1

1

1− δ2

}
.

Next, I describe an algorithm that characterizes a set of SPE outcomes. It

has two parts that feed each other in a recursive manner. The first constructs

a set of efficient SPE outcomes from a given set of continuation payoffs. Fix-

ing any such payoff profile as one arising from equilibrium continuation play

following impasse in the first period, it characterizes the efficient outcomes in

the first period that can be sustained in equilibrium. It uses the following pair

of equations.

1− y2 − k1(y1 + y2 − 1) = wc1

1− y1 − k2(y1 + y2 − 1) = wc2
(7)

The second constructs a set of SPEs with delay from a given set of efficient SPE

outcomes. Fixing an efficient SPE outcome as the one eventually agreed on, it

characterizes how many periods of disagreement can precede it in equilibrium

and uses the following inequality.

1− δn−11 y1 − δn−12 y2 ≤ min{k1δn−12 y2, k2δ
n−1y1}. (8)

Let E1 be the set of all outcomes of SPE with maximum delay 0. Now, for

t ≥ 2 define the following recursively,

• Let ζt = {(w1, w2)|wi = δni yi, (y, n) ∈ Et−1}.

• For each w ∈ ζt let ytw solve 7 with wc = w.

• Let Zt
w be the set of all exactly compatible demands z such that zi ≤ ytwi

for i ∈ {1, 2} and Zt = ∪w∈ζtZt
w.

• Let Ẽt = {(y, n) ∈ Zt × N|(y, n) satisfies inequality 8}.

• Let Et = Et−1 ∪ Ẽt.
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Finally let E = Et if and only if Et = Et+1.

Proposition 4 Every outcome in E is an SPE outcome.

It is clear from proposition 1 that additional conditions that restrict the

maximum delay allowed in an SPE, as a result, also shrink the set of compatible

demand profiles that can obtain in equilibrium. I study three such conditions

in the following subsections.

3.1 Renegotiation-Proofness

Negotiators who are familiar with each other should, in the presence of mul-

tiple equilibria, be able to avoid the strictly Pareto dominated ones. This is

especially so, if the Pareto dominating equilibrium is one they anticipate to

play following some history. Since the game is identical following any history

h ∈ H, the negotiators would see the incongruence of taking an efficient path

following one such history and an inefficient one following another. Given

their familiarity they need not take their cues from some possibly inefficient

norm, but rather count on renegotiating away from such inefficient equilibria.

The notions of weak renegotiation proofness in Farrell and Maskin (1989) and

internal consistency in Bernheim and Ray (1989) capture this idea in the con-

text of repeated games. While not a repeated game, the present model shares

its key feature that following any number of rounds (of failed bargaining), the

continuation game looks the same. Relying on this stationarity, I import an

appropriate notion of renegotiation-proofness for the current setting.

Let ψ(σ;ht) be the continuation payoff (profile) implied by σ given history

ht ∈ H and let

Ψ(σ) = ∪ht∈Hψ(σ;ht)

be the set of all continuation payoffs under σ.

Definition 2 An SPE σ is renegotiation-proof if for no x, y ∈ Ψ(σ) is x� y.

Renegotiation-proofness is routinely studied in equilibrium analyses for a

variety of economic questions, and with important implications. See, for in-

stance, Barrett (1994) on international environmental agreements, Matsuyama
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(1990) on trade liberalization, Kletzer and Wright (2000) on sovereign debt.

Nonetheless, it is not the only “reasonable” description of behaviour. It does

however facilitate a natural separation of all pairs of bargainers into those who

always coordinate on efficient outcomes on the equilibrium path and antici-

pate the same off it, and others. Renegotiation-proofness delivers a sharper

characterization of the behaviour of the former group.

Note that renegotiation-proofness does not rule out history dependent

strategies. Consider, for instance, the construction due to Avner Shaked re-

ported in Sutton (1986). It supports any efficient division of the surplus as

a subgame perfect equilibrium outcome of a 3-person Rubinstein bargaining

game for high enough discount factors. The construction relies heavily on the

history-dependence of the strategy profile. Imposing an appropriate version

of renegotiation-proofness has no effect on the result since all continuation

outcomes are efficient. The severe multiplicity persists. In the current model,

however, renegotiation-proofness sharply restricts the set of equilibrium out-

comes.

Proposition 5 (z, t) is the outcome of a renegotiation-proof subgame perfect

equilibrium if and only if t = 1 and

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

. (9)

I now sketch the argument behind this result. The detailed proof is in the

appendix. Given the structure of SPE identified in lemma 1, renegotiation-

proofness simply rules out any delay. The necessity of inequality 9 then follows

immediately from proposition 1. To establish sufficiency, I construct the fol-

lowing stationary strategy profile, which I show to be subgame perfect for any

z satisfying inequality 9 in lemma 4 in the appendix.

Construction 1 Consider the following stationary strategy profile, σ. Fix

z such that d(z) = 0. For all ht ∈ H, set σi(h
t) = zi. If player i, for

some i ∈ {1, 2}, in period t deviates to a higher demand, ẑi > zi, then in the

concession stage game (S, S) is played if it is a Nash equilibrium and otherwise
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(Ai, S−i) is played. For all other h ∈ H ′ some pure strategy Nash equilibrium

of the concession stage game is played.

The strategy profile σ above satisfies renegotiation-proofness, since following

any history h ∈ H the continuation outcome is efficient and consists of agreeing

on the compatible demand profile z.

Proposition 5 offers a preview of the limit uniqueness result in section 4.2.

Consider a sequence of these linear bargaining games parametrized by marginal

concession costs {kn1 , kn2 }∞n=1 such that kn1 = γkn2 for all n and kn2 → ∞ as

n → ∞. Observe first that at the limit, it is too costly for any bargainer

to concede following any incompatible demand. The model therefore reduces

to the IH-NDG. However, in contrast to the acute multiplicity of SPE in the

IH-NDG, the set of renegotiation-proof SPE as characterized in proposition

5 converges to a singleton at the limit. At this unique limit outcome, the

bargainers agree on the compatible profile z with

z2
z1

=
1− δ1
1− δ2

1

γ
.

Collard-Wexler et al. (2019) use a criteria called no-delay to refine the set

of SPE in their bargaining model. The criteria is identical to the notion of SPE

with maximum delay 0, in that it requires no delay following any history. All

results requiring renegotiation proofness in this paper would remain unchanged

if the no-delay criteria was used instead. This however is a result that follows

from proposition 5. In the very closely related IH-NDG, by contrast, perpetual

disagreement satisfies renegotiation proofness while obviously violating no-

delay.

3.2 Markov Perfect Equilibria and Gradualism

Negotiations often take place between strangers or relatively inexperienced

bargainers. The assumption of renegotiation-proofness may not be appropri-

ate in such cases. A different assumption, routinely made in applied work,

requires players to use Markov strategies. Maskin and Tirole (2001) discusses

some of the theoretical considerations that support its use. Vespa (2020) finds
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experimental evidence of it as the modal behaviour in the dynamic common

pool game. In this section I focus on SPE in Markov strategies. Similar to the

previous section, the agenda is not to propose the Markov restriction as the

only “sensible” one. Instead, it is to obtain a sharper characterization of the

behaviour of an empirically large and relevant group of people in this setting.8

Definition 3 σi is a Markov strategy for player i if for all h, h̃ ∈ H t

(i) σi(h) = σi(h̃) and

(ii) σi(h, z
t+1) = σi(h̃, z

t+1).

In words, under the Markov requirement, player i’s demand in period t

must be invariant to the specific t − 1 demand profiles rejected in the past.

Further, the concession stage decision in period t should depend upon the

period t demand profile alone. Note, however, that it allows demands and

concession stage behaviour to depend on calendar time. For instance, a strat-

egy in which the demands get less and less extreme over the first m periods of

bargaining is permitted. Indeed, such strategies can generate delay in equilib-

rium. Let bxc denote the greatest integer less than or equal to x.

Proposition 6 Let j ∈ {1, 2} such that δj ≥ δ−j. If (z, t) is a Markov perfect

equilibrium outcome then t ≤ n∗ and

1− δn∗−j
1− δn∗j

kj
1 + k−j

≤ zj
z−j
≤ 1− δ−j

1− δj
1 + kj
k−j

,

with

n∗ − 1 =

⌊
ln k1+k2

k1+k2+k1k2

ln δj

⌋
.

As in the case of regular SPE, to sustain delay in MPE the bargainers must

make incompatible demands that neither wishes to deviate from. To ensure

that a unilateral deviation to a compatible profile is not profitable, the de-

mands simply need to be sufficiently aggressive, exactly as in the case of SPE.

8Note that unlike in the repeated prisoner’s dilemma, Markov strategies do not preclude
efficiency in the current bargaining game.
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It is less demanding to rule out profitable deviations where a bargainer makes

a lower but still incompatible demand, which forces her opponent to concede

in the subsequent concession game. Due to the Markov restriction, the con-

tinuation play cannot change following such a deviation. Long expected delay

makes such deviations feasible since it lowers the payoff from disagreement

and makes concession more palatable. This feature further limits the amount

of delay that can arise in an MPE.

The upper bound to the length of delay, restricts the set of equilibrium

continuation outcomes. The remaining argument, similar to that of propo-

sition 5, characterizes the best compatible demand profile that can arise for

each player, relying on the recursive structure of the game.

As for the result itself, observe first that if the two bargainers are equally

impatient, then the set of MPE outcomes coincides with the renegotiation-

proof SPE outcomes. So not only is the larger set of equilibrium surplus

agreements dependent on the delay allowed by MPE, it relies on bargainers

having different degrees of impatience. Second, suppose the maximum delay

under MPE is derived to be m under proposition 6, the bounds on MPE

surplus divisions are tighter than the bounds that arise for SPE with maximum

delay m, as derived in proposition 1. The lack of history-dependent strategies

delivers a sharper prediction.

A final interesting feature of the Markov environment is the nature of

incompatible demands in an MPE with delay. Gradualism is a commonly ob-

served feature of bargaining in which players gradually lower their demands,

starting with very aggressive ones and ending with a compatible profile.9

MPEs with delay yield gradualism in a natural way. The following propo-

sition characterizes this feature.

Proposition 7 If (y,m) is the outcome of a Markov perfect equilibrium with

a delay of m − 1 > 0 periods then the incompatible demand profiles zt for

9See, for instance, Backus, Blake, Larsen and Tadelis (2020).
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1 ≤ t ≤ m− 1 must satisfy

zti ≥
(1− δm−t−i y−i)(1 + ki)− δm−ti yi

ki
.

In words, the smallest (incompatible) demand that can arise in an MPE

is higher the further away (in periods) it is made from the eventual agree-

ment. Two separate features contribute to this. The obvious one is that for

neither player to want to deviate to simply accepting the others implicit offer

(by making a compatible demand) it must be that the offers are worse than

accepting the delayed agreement. The longer the delay the worse the offers

need to be, and therefore higher demands. The less obvious feature is that a

bargainer may find it profitable to deviate to a lower but still incompatible

demand profile that forces the other player to concede. To rule out such a

deviation, the incompatible demands need to be even higher than the level

required to rule out deviations to compatible profiles. Further, this threshold

is higher the more periods that remain to agreement.

I end this section by characterizing the set of stationary MPE outcomes.

Stationarity does not allow strategies to depend on calendar time. It requires

σi(h) = σi(h̃) ∀h, h̃ ∈ H.

Proposition 8 (z, t) is a stationary Markov perfect equilibrium outcome if

and only if t = 1 and

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Notice that the set of stationary MPE outcomes coincides exactly with the

set of renegotiation-proof SPE outcomes. In general dynamic games where

both concepts apply the two are typically not the same. Take an infinitely

repeated prisoner’s dilemma game with high enough discount factors, for in-

stance. The unique MPE outcome involves both parties defecting forever. On

the other hand, cooperation can be sustained as a weak renegotiation-proof
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SPE, as shown in Farrell and Maskin (1989).10

4 General Model

The qualitative results obtained in propositions 1 and 5 do not rely on the

assumption of linearity. Let U and C be the set of all (pairs of) functions that

satisfy assumptions 1 and 2, respectively. Fix some u ∈ U and c ∈ C and

n∗ ∈ N. For i ∈ {1, 2}, define the function z̃n
∗
−i(zi) implicitly as the solution to

the equation

u−i(1− zi)− c−i(zi + z̃n
∗

−i(zi)− 1) = δn
∗+1
−i u−i(1− zi). (10)

Similarly define the function ˜̃zn
∗
−i(zi) implicitly as the solution to the equation

ui(1− ˜̃zn
∗

−i(zi))− ci(zi + ˜̃zn
∗

−i(zi)− 1) = δiui(zi). (11)

It turns out that there is a unique zi, which I denote as zMn∗
i , that solves

˜̃zn
∗

−i(zi) = z̃n
∗

−i(zi). (12)

Proposition 9 In the general model, if (y, t) is the outcome of an SPE with

maximum delay n∗, with y = u(z), then d(z) = 0 and

1− zMn∗
1

zMn∗
1

≤ z2
z1
≤ zMn∗

2

1− zMn∗
2

. (13)

Relabel zMn∗
i simply as zMi when n∗ = 0, and the following generalization of

Proposition 5 obtains.

Proposition 10 In the general model, (y, t) is the outcome of a renegotiation-

proof SPE with y = u(z), if and only if t = 1, d(z) = 0 and

1− zM1
zM1

≤ z2
z1
≤ zM2

1− zM2
. (14)

10See also van Damme (1989).
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Figure 3

Figure 3 clarifies the content of these results. For a given n∗, equations

10 and 11 generate four functions. The function z̃n∗2 (z1) returns the smallest

player 2 demand such that following any pair of incompatible demands z1 and

z2 > z̃n∗2 (z1) and a continuation payoff of δn
∗+1

2 (1−z1), player 2 strictly prefers

S. The function ˜̃zn∗2 returns the largest player 2 demand such that following

any pair of incompatible demands z1 and z2 < ˜̃zn∗2 (z1) and a continuation

payoff δ1u1(z1), player 1 strictly prefers concession, if 2 chooses S.

Notice that z1 > zMn∗
1 implies ˜̃zn∗2 (z1) > z̃n∗2 (z1). Such a z1 cannot be the

best equilibrium efficient split for player 1, because player 2 could then deviate

to a demand z2 ∈ (z̃n∗2 (z1), ˜̃z
n∗
2 (z1)). This would force a concession from player

1 in the resulting concession game, for any equilibrium continuation payoff.

This is the argument behind the bound zMn∗
1 . A symmetric argument applies

to player 2’s bound of zMn∗
2 .

Increasing player 1’s cost function, holding all else fixed, leaves functions

˜̃zn∗1 and z̃n∗2 unchanged while moving ˜̃zn∗2 and z̃n∗1 closer to the efficient frontier.

Figure 3 shows that this would increase zMn∗
1 and lower zMn∗

2 , confirming

Schelling’s insight about weakness being a strength in this more general setting.

Increasing player 1’s patience, δ1, has a qualitatively similar effect to increasing
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her cost function. Finally observe that lowering n∗, leaves ˜̃zn∗i unchanged for

i ∈ {1, 2} while moving both z̃n∗1 and z̃n∗2 closer towards the diagonal. This

means that zMn∗
i is increasing in n∗, as expected.

4.1 Kalai Bargaining Solution

Kalai (1977) introduces a family of bargaining solutions parametrized by a

single variable, a proportion. Any bargaining solution that is monotonic, in

that increasing the set of feasible bargaining outcomes never hurts either bar-

gainer (formally defined below), is a Kalai (or proportional) bargaining solu-

tion (KBS) and vice versa. The family of solutions is exactly characterized by

the axioms of independence of irrelevant alternatives, individual monotonicity

and continuity. In addition to being compelling theoretically, the solutions are

used extensively and in a variety of fields. Recently, for instance, it is used

increasingly in the field of monetary economics.11

I now introduce some notation in order to define KBS. Let Π(u) = {y|yi =

ui(zi), zi ≥ 0,∀i ∈ {1, 2} and z1+z2 ≤ 1} denote the set of feasible payoffs that

can arise from some allocation of the surplus. Set ud = (u1(0), u2(0)) = (0, 0)

to be the disagreement point. Combined, (Π(u), ud) represents a bargaining

problem. Finally let B = {(Π(u), ud)|u ∈ U} be the set of all bargaining

problems that can arise from payoff functions that satisfy assumption 1. A

bargaining solution is a function φ : B → R2 such that φ(B) ∈ B for all B ∈ B.

It is monotonic if for any A,B ∈ B, A ⊂ B implies φ(B) ≥ φ(A).

The Kalai Bargaining Solution with proportions (θ, 1), denoted by Kθ, is

defined as

Kθ(Π, ud) = λ(Π, ud) · (θ, 1),∀Π ∈ B

where λ(Π, ud) = max{q ∈ R|q · (θ, 1) ∈ Π}.12 In words, the proportion

parameter, θ, fixes a unique ray in the utility space passing through (0, 0).

For any bargaining problem, the KBS with proportion θ then simply picks the

point where the ray meets the efficient frontier of the bargaining problem.

11See, for instance, Lagos, Rocheteau and Wright (2017). Duffy, Lebeau and Puzzello
(2021) find that KBS better fits the behaviour of bargainers in the laboratory facing liquidity
constraints.

12Note that (θ, 1) is a vector and since q is a scalar, q · (θ, 1) = (qθ, q).
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4.2 Strategic Foundation

Return now to the general non-cooperative bargaining model. Making the

concession cost functions steeper makes it progressively harder for the bar-

gainers to back down from their demands. At the limit, with arbitrarily high

marginal concession costs, the infinite horizon version of the Nash demand

game obtains. Neither player can back down from incompatible demands.

Binmore (1987) points out that any efficient payoff profile can be supported

as an SPE outcome of the IH-NDG. Infinite delay can also be supported in

SPE by each bargainer always demanding the entire surplus. Chatterjee and

Samuelson (1990) show that this acute multiplicity further survives trembling

hand perfection (see Selten (1975)). The limit set of renegotiation-proof SPE

outcomes, in sharp contrast, is a singleton.

For any u ∈ U and c ∈ C, let gc(u) denote the game described in section 2,

where ui and ci are player i’s payoff and concession cost functions, respectively,

for i ∈ {1, 2}. Denote the corresponding set of renegotiation-proof SPE payoff

profiles by ξ(gc(u)). gc therefore maps any pair of payoff functions in U to its

corresponding infinite horizon bargaining game. Consider a sequence of such

mappings {gcn}∞n=1 with cn ∈ C for all n, such that as n → ∞, cn
′
i (0+) → ∞

(the right derivative of the concession cost functions at 0 becomes arbitrarily

large). Next, assume that there exists some integer N such that ∀m,n > N ,

0 < lim
d↘0

cm1 (d)/cm2 (d) = lim
d↘0

cn1 (d)/cn2 (d) <∞. (15)

In words, the assumption requires that sufficiently far along the sequence, the

ratio of the concession costs for vanishingly small concessions is the same,

positive and bounded. The assumption is satisfied by the linear specification

in section 3, but it does not require linearity of either the individual cost

functions or even their ratio.13

Finally let

ξ∗γ(u) = lim
n→∞

ξ(gc
n

(u)), where γ = lim
n→∞

cn1 (0+)/cn2 (0+).

13Consider, for example, cn1 (d) = n(d+ 2d2) and cn2 (d) = n(4d+ d2).
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The limit set of renegotiation-proof SPE is therefore captured by ξ∗γ(u). It is

parameterized by γ, which is the ratio of the concession cost functions evalu-

ated at the limit as the concessions become vanishingly small. The assumption

described in 15 ensures that γ is well defined.

Proposition 11 For all u ∈ U , ξ∗γ(u) = Kθ(Π(u), ud) where θ = γ(1−δ2)/(1−
δ1).

Intuition

The intuition for the result can be split into three key arguments. First, for

any set of cost and payoff functions, the two distinct best renegotiation proof

SPE outcomes (henceforth labeled extreme RP-SPE outcomes), one for each

player, admit a stationary strategy profile each. This equilibrium feature of

the current model does not hold for general dynamic bargaining games.14 It

then follows that an agent’s best renegotiation proof SPE outcome is identical

to her best stationary SPE outcome.

Second, the two extreme RP-SPE outcomes approach each other as the

marginal concession cost increases. This can be seen in figure 3, setting n∗ = 0.

The extreme RP-SPE outcomes are (zM1 , 1 − zM1 ) and (1 − zM2 , zM2 ). As the

marginal concession cost increases, all the functions z̃0i and ˜̃z0i for i ∈ {1, 2},
swing towards the efficient demand frontier. In turn, the two extreme RP-SPE

outcomes and, as a result all RP-SPE outcomes, converge. Very importantly,

such convergence does not occur for the two best SPE outcomes in general.

Higher marginal concession costs permit longer equilibrium delay, which can

be used to construct equilibria that keep the two outcomes apart.

Finally, at the limit the ratio of payoffs to the two bargainers equals a con-

stant. The constant is itself independent of the payoff functions and depends

solely on the discount factors and a limit ratio of the concession cost functions.

The additive separability of concession costs and their dependence on the dis-

tance between “physical” demands instead of payoff levels allow this limit

characterization, which coincides with the Kalai bargaining solution. Since

14For instance, the extreme RP-SPE outcomes in the 3-person Rubinstein bargaining
game reported in Sutton (1986) do not admit a stationary strategy profile.
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the limit is defined in terms of arbitrarily steep concession cost functions, the

payoff functions ui for i ∈ {1, 2} alone represent the preferences of the two

bargainers (at this limit). Given the characterization, it is clear that the limit

outcome, just like the Kalai solution, is not scale invariant.

The strategic foundation for KBS in Dutta (2012), which studies the single

period version of the current model, is similarly obtained at the high concession

cost limit. The convergence argument in that paper is substituted by the

second and third arguments above, to fit the infinite horizon environment and

the requirements of subgame perfection.

High concession cost limit

The high concession cost setting is best interpreted as a perturbation of the

perfect commitment implicit in the IH-NDG. In the latter, agents are fully

committed to their demands in that incompatible demands directly lead to

an impasse in that period. The current analysis shows that allowing agents

even the smallest room for concession opens up strategic considerations that

substantially shrink the set of equilibrium outcomes. That perturbing the

commitment structure selects the KBS, stands in sharp contrast to other equi-

librium selection arguments for the NDG that deliver the Nash bargaining

solution (see Nash (1953), Binmore (1987a), Carlsson (1991)) . These latter

arguments perturb the information structure in a way that effectively smooths

the NDG payoff function, in that the payoff following incompatible demands

smoothly tapers off to zero as a function of the demands. The IH-NDG with

a similar information structure perturbation is obtained as a special case of

a more general bargaining model studied in Harstad (2021). Here too, the

argument selects the asymmetric Nash bargaining solution. The commitment

structure perturbation in the current paper does not smooth the (effective)

payoff functions. They remain discontinuous at the efficient demand frontier.

The Nash program

A narrow reading of the Nash program simply calls for strategic games whose

equilibria align with a given cooperative solution concept. A broader interpre-

tation requires further that the strategic models capture key features of some
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class of institutional frameworks.15 This facilitates the use of the correspond-

ing bargaining solution for negotiations that take place in such institutional

settings. The preceding analysis makes such a case for the Kalai solution in en-

vironments where commitment ability by way of concession costs is prevalent.

Section 5.1 lists some such institutional and social environments.

It is clear in Kalai (1977) that while the family of bargaining solutions is a

compelling one, finding the relevant proportion needs information beyond what

is modelled in a standard bargaining problem (an element of B). In proposition

11 the degree of impatience of the bargainers and their relative concession costs

constitute this information. So not only does this formalization of Schelling’s

theory provide a strategic foundation for the Kalai bargaining solution, it also

selects the appropriate proportion.

Implications

The characterization in proposition 11 is easy to interpret. The physical split

of surplus must be efficient (z1 + z2 = 1) and the resulting ratio of utilities

must satisfy
u1(z1)

u2(z2)
= γ

1− δ2
1− δ1

.

Greater patience leads to higher payoff, as in canonical models of bargaining.

In essence, despite its definition as a limit, γ captures the relative concession

costs faced by the players. Higher concession costs translate into better bar-

gaining outcomes. By virtue of its equivalence to a KBS, the limit solution

inherits monotonicity while failing scale invariance. An important implica-

tion is that scaling up a specific agent’s payoff function brings that agent a

higher payoff (as required by monotonicity) but also a lower physical split of

the surplus. Consider the following example, borrowed from Kalai (1977) that

involves two scenarios of splitting one hundred chips. In both, the bargainers

have the same linear utility for money, the same discount factors and γ = 1.

In the first scenario either player can cash in each chip for 1 dollar. In the

second, player 2 can continue to cash in each chip for one dollar while player 1

can cash in each chip for three dollars. In the limit solution the players gets 50

15See quoted passage from Binmore, Osborne and Rubinstein (1992) in the introduction.
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dollars each from a 50-50 split in the first scenario and 75 dollars each from a

25-75 split in the second scenario. The Nash bargaining solution, by contrast,

calls for a 50-50 split in both scenarios. Note that the difference arises even in

a wholly linear specification.

An application in monetary economics

The observation above has implications in monetary economics. Hu and Ro-

cheteau (2020) discuss a game where two players bargain over the sale of a

divisible commodity in return for monetary payment subject to a liquidity con-

straint. They point out how the Nash bargaining solution and KBS diverge

when the constraint binds.16 The following example shows how the two may

diverge even when the liquidity constraint does not bind.

A buyer (she) bargains with a seller (he) over the quantity of a good pro-

duced by the latter, y ∈ R+, she wishes to purchase, and its price p ∈ R+.

Preferences over the bargaining outcomes (y, p) ∈ R2
+ are represented by the

utility functions

ub = α(u(y)− p), and

us = −v(y) + p

for the buyer and seller respectively. u is strictly increasing, strictly concave,

u′(0) = ∞ and u(0) = 0 while v is strictly increasing, strictly convex with

v(0) = 0. Further, u′(y∗) = v′(y∗) for some y∗ > 0. Finally α ∈ R+.17

Hu and Rocheteau (2020) study the case of α = 1 and show that if a

liquidity constraint (p ≤ z) binds then the NBS and KBS solutions differ, but

otherwise coincide. The NBS and KBS are assumed to have the same weights,

namely θ for the buyer and 1 − θ for the seller. The result suggests that the

non-linearity of the utility possibility frontier due to the liquidity constraint is

responsible for the different outcomes under the two solutions.

Assume away the liquidity constraint. The usual computations then verify

16See also Duffy et al. (2021).
17Assume all transactions are carried out using chips. The buyer can exchange y units

of the commodity for u(y) many chips while the seller needs to spend v(y) many chips to
produce y. The price is also in chips. Both players have linear utility in money and the
buyer can cash in each chip for α dollars while the seller can cash in each chip for 1 dollar.
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that under either NBS or KBS, the level of output is y∗, characterized by

u′(y∗) = v′(y∗), irrespective of α. The price under NBS, again irrespective of

α is given by

pNBSθ = (1− θ)u(y∗) + θv(y∗).

By contrast, under KBS, the price is

pKBSθ =
(1− θ)u(y∗) + αθv(y∗)

(1− θ) + αθ
.

The utility possibility frontier is linear for all values of α and yet the prices

are different. Further pKBSθ > (<)pNBSθ if α < (>)1.

An application in family economics

The intra (marital) household resource allocation problem is typically framed

as one resolved by bargaining between the spouses, summarized by the Nash

bargaining solution.18 The main explanatory variables are the outside options,

reflecting divorce in the early literature, and later a within-marriage non-

cooperative outcome following Lundberg and Pollak (1993). Missing in this

specification is how gender and cultural norms may directly impact bargaining

power (instead of indirectly, through outside options).19 The literature has

responded with the more flexible asymmetric Nash bargaining solution, but

without a mechanism to translate the external environment into bargaining

weights.

Lundberg and Pollak (1996) state that Norms regarding appropriate mar-

ital or parental behavior for men and women may be powerful in their ability

to channel the behavior of marital partners to one equilibrium among many.

Proposition 11 offers an explicit channel through which norms influence bar-

gaining power. For instance, in patriarchal societies, such as those studied

in Andersen et al. (2018), males face relatively higher concession costs than

women. The opposite is true for matriarchal societies. This would mean, as-

suming player 1 to be female and 2 male, a value of γ more (less) than 1 in

18See Doepke and Kindermann (2017) for an excellent overview of the literature.
19See, for instance, the experimental results of Andersen et al. (2018).
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matriarchal (patriarchal) societies.

5 Discussion

5.1 Concession Costs

The commitment ability at the heart of the bargaining model is generated by

the cost an agent must pay from backing down from her current incompatible

demand.20 It is therefore important to discuss the relevant features of these

concession cost functions. Following the Nash program mandate, I begin by

listing a few ways in which such costs arise and the forms they take.

Examples

(i) Audience Costs : Elected representatives negotiating on behalf of their con-

stituents are punished with a dimmer re-election prospect (the cost) for back-

ing down from a publicly announced demand. In international negotiations

this cost is generated by the domestic political audience, and has been studied

in some detail following the work of Fearon (1994) and Martin (1993). Tomz

(2007) provides direct evidence of these audience costs through experiments

embedded in public opinion surveys.

In domestic negotiations between rival political parties the level of public

support generated by each competing demand determines its audience cost.

The greater the support for an announced demand the higher the cost of back-

ing away from it. Leventoglu and Tarar (2005) and Basak and Deb (2020)

study such concession costs in a Rubinstein bargaining model, where each

player gets only one attempt at commitment.

(ii) Delegated Bargaining : Negotiations between two entities are often car-

ried out by representatives (delegates) armed with appropriate incentives. A

penalty for backing down from an announced demand is one such incentive.

Indeed, the example in Schelling (1956) of a union official bargaining on be-

half of the members has this feature; concession raises the odds of the official

getting fired. Under this interpretation of concession costs, the form of delega-

tion is exogenous in this paper. For other forms of (endogenous) delegation in

20By contrast, bargainers are not held to historical demands that led to an impasse.

32



bargaining see Crawford and Varian (1979), Jones (1989), Segendorff (1998)

and Harstad (2008).

(iii) Face: Perhaps the most pervasive form of concession costs, but the least

studied in economics, consists of losing face. Carefully detailed in Ho (1976),

the concept of face, Chinese in origin, corresponds to a notion of social stand-

ing that is distinct from status, prestige, dignity, and the like. Unlike a binary

variable, it can vary quantitatively in a gradual manner. Furthermore, the

relevant quantity of face for an individual depends on the social situation of

the interaction. As Ho points out, It is the extent to which a particular per-

son’s social functioning is adversely affected that constitutes the true measure

of what losing face means to him. In the current setting, concession leads to

losing face. This form of concession costs allows for a variety of social, polit-

ical and historical features to translate into bargaining power in the model.

For example, concession may lead to greater (or lesser) loss of face for a man

compared to a woman, depending on gender norms.

Structure of the cost function

The qualitative results of the bargaining model, as in section 4, require only

that the concession cost functions satisfy assumption 2. This is consistent with

the examples above that suggest little structure for the functions other than it

be increasing in the conceded amount. In particular, the cost functions need

not be linear (as in section 3) or even convex. In many models of economic

decision making, the cost from taking some productive action is assumed to be

convex to ensure the overall objective function remains concave and admits an

interior optimal solution. In the current setting, concession costs are incurred

only off the equilibrium path. Therefore, despite their key role in the model,

the curvature of these functions plays no role.

In line with the examples above, an agent’s concession cost in the model

is, in a sense, independent of how much she cares about the surplus. For

instance, the audience cost faced by an elected representative is determined

by how much the domestic audience cares to punish the agent for different

degrees of concession. The cost is not directly related to how much the agent

33



herself values different surplus splits. This feature is captured in two ways by

the model. First, the size of the concession depends on the agents’ “physi-

cal” demands and not payoff levels. Second, the concession cost is additively

separable. These in turn make the (large marginal cost) limit ratio of the com-

mitment costs independent of the payoff functions, which is a key component

of proposition 11. Like the Kalai solution, the equilibrium prediction at this

limit varies with the payoff function.

Relation to renegotiation proofness

The choice to concede is an individual one (made in equilibrium) and arises

after incompatible demands. It depends on how far apart the incompatible

demands are, the cost function and anticipated future play. Renegotiation-

proofness rules out incompatible demands before they are made, by requiring

agents to coordinate away from Pareto dominated equilibria. Once incompat-

ible demands are made, however, concession (in that period) is costly. Higher

concession cost functions reflect sharper incentives from sources like in the

examples above, and are unrelated to the agents’ coordination ability.

5.2 Simultaneous versus sequential demands

The importance of simultaneous versus sequential demands is, in a sense, a

superficial one in the current setting. Instead, the two key feature are the

following. First, the demand made by one agent is not just met by a decision

to accept or reject, but by a competing demand from the other agent. Second,

once two incompatible demands arrive at the table, the decision to accept or

reject (stick) is made simultaneously. The latter concession stage is where the

agents’s concerns about concession costs and patience combine to determine

her bargaining strength, and simultaneity here is important. By contrast, re-

quiring the demands to be made in some arbitrarily fixed order, has a lot less

impact. For instance, all RP (or no-delay) SPE outcomes identified in propo-

sitions 8 and 5 continue to be supported by SPE, with sequential demands

that follow some fixed order. The specification matches descriptive accounts

of bilateral negotiations that associate a round of bargaining with two com-

peting positions. See for instance, the evolution EU-UK positions on citizen’s
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rights during Brexit negotiations in 2017 listed in Department for Exiting the

European Union and Home Office (2017).

5.3 Other Related Literature

Ellingsen and Miettinen (2014) (henceforth EM) extend the static model of

Ellingsen and Miettinen (2008) to a fairly involved dynamic model. Formal-

izations of Schelling’s ideas are usually closely related to the Nash demand

game. The EM model has elements of both the Nash demand game (simul-

taneous demands) and the generalized Rubinstein bargaining framework. As

examples of the latter, (a) following demands that are more than compatible,

a single responder is selected randomly to accept or reject the other’s offer

and (b) following a choice of flexibility by both bargainers, a single player is

randomly selected to make an offer for that period. The key difference with

the current formalization, however, is that in EM (as well as Ellingsen and

Miettinen (2008)) commitment ability is exogenous and independent of the

actual demands made by the players. It does not matter whether a bargainer

is offered a lot of room to back down or none at all, her commitment abil-

ity is pinned down by an exogenous randomization device. This distinction

is critical, since in the current study the strategic feature that resolves the

bargaining problem, is precisely the ability of bargainers to affect each other’s

commitment ability by choosing appropriate demands.

The delay obtained in Markov perfect equilibrium in section 3.2 is neither

the result of money burning as in Avery and Zemsky (1994) nor due to strategic

uncertainty as in Friedenberg (2019). In a sense, as Sakovics (1993) puts it,

the delay is wholly ritualistic and can be expected in settings where bargainers

take their cues from norms or traditions that are perhaps optimal in some

larger context but offer an inefficient prescription in the specific bargaining

instance. Similar equilibria also arise in Perry and Reny (1993) and Sakovics

(1993), who study a generalization of the Rubinstein model with less restriction

on when offers can be made and responded to. A key finding in both is that

allowing for simultaneous demands generates an acute multiplicity of equilibria

including those with delay. While not their focus, the SPE with delay in these
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models feature a milder form of the gradualism that appears in the current

study. The further away the anticipated agreement, the further apart the

incompatible demands need to be to deter deviation to a compatible profile.

As stated earlier, in the current study the incompatible demands need to be

even further apart to rule out deviations to incompatible profiles. Compte

and Jehiel (2004) provides a wholly different rationale for gradualism. Players

always have access to outside options whose values depend on past offers. If

more favourable offers increase the value of the opponent’s outside option, then

bargainers find it optimal to lower their demand gradually in equilibrium.

A Appendix

Lemma 3 σ cannot be an SPE in the general model, if for some h ∈ H,

σ(h) = z such that zi = 1 and z−i = 0 for some i ∈ {1, 2}.

Proof. Suppose under σ, in the subgame g(h), the two players make the

compatible demands zi = 1 and z−i = 0, and player −i obtains a payoff of

u−i(0) = 0. The highest payoff player i could get if bargaining broke down

this period is δiui(1). Notice that ui(1− ẑ−i)− ci(zi + ẑ−i− 1) is a continuous

(decreasing) function of ẑ−i. It takes a value of ui(1) at ẑ−i = 0, which is

strictly greater than δiui(1). Therefore there exists ẑ−i > 0 such that ui(1 −
ẑ−i)− ci(zi + ẑ−i − 1) > δiui(1). Now, if player −i were to deviate to this ẑ−i

instead of demanding 0, then in the subsequent concession game the dominance

solvable outcome would involve player i playing A and −i playing S. Since

this is a profitable deviation, the strategy profile σ cannot be an SPE.

Proof for Proposition 2.

The necessity of x ∈ B∗ follows by definition. By way of contradiction, suppose

that (x, t) is an SPE outcome with t > 1 , x ∈ B∗ and

δt−11 x1 <
1− δ2z∗2
1 + k2

where z∗2 = supz∈B∗ z2. It then suffices to show that player 1 is better off

deviating from her first period incompatible demand.
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Consider the first period incompatible demand profile, z1 in such an SPE.

It must be that z1i ≥ 1 − δt−1x−i for i ∈ {1, 2}. Otherwise player i could

profitably deviate to making the compatible demand 1− z1−i in period 1.

Fix some continuation payoff profile w. Then the set of incompatible de-

mand profiles y for which player 2 is indifferent between A and S, conditional

on player 1 choosing S, is given by the the equation 1−y1−k2(y1+y2−1) = w2.

Rewrite this as y1 = 1− k2
1+k2

y2− w2

1+k2
. The best continuation payoff for player

2 is δ2z
∗
2 . Let

y∗1(y2) = 1− k2
1 + k2

y2 −
δ2z
∗
2

1 + k2
.

Notice that for any incompatible demand profile y, with y1 < y∗1(y2), player 2

strictly prefers A to S, conditional on 1 choosing S, if her continuation payoff

is δ2z
∗
2 . Further, since any SPE continuation payoff w2 is no greater than δ2z

∗
2 ,

following incompatible profile y with y1 < y∗1(y2), player 2 strictly prefers A

to S, conditional on 1 choosing S, for any SPE continuation profile.

Given continuation payoff profile w, the set of incompatible demand profiles

y for which player 1 is indifferent between A and S, conditional on player 2

choosing S, satisfies the equation 1− y2 − k1(y1 + y2 − 1) = w1. Rewrite this

as y1 = (1− y2)1+k1k1
− w1

1+k1
k1

. Let

y∗∗1 (y2) = (1− y2)
1 + k1
k1

.

Then for any incompatible demand profile y with y1 > y∗∗1 (y2), player 1 strictly

prefers to S to A, for any SPE continuation profile.

Return to the premise of player 1’s SPE payoff δt−11 x1 and first period

incompatible profile z1. By the inequalities derived above, if for all z12 ≥
1 − δt−1x1, the inequalities y∗1(z12) > δt−11 x1 and y∗1(z12) > y∗∗1 (z12) hold, then a

contradiction obtains. Player 1 could then profitably deviate in period 1 to

making an incompatible demand y∗1(z12) > ẑ11 > max{y∗∗1 (z12), δt−11 x1} and force

player 2 to concede, no matter the SPE continuation profile.

Next observe that y∗1(1) =
1−δ2z∗2
1+k2

. Since δt−11 x1 <
1−δ2z∗2
1+k2

(by assumption)

and y∗1 is a decreasing function, it follows that y∗1(z12) > δt−11 x1 for all z12 ≥ 1−
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δt−1x1. Since y∗∗1 is also a decreasing linear function and y∗∗1 (1) = 0, to obtain

the contradiction, it suffices to show that y∗1(1 − δt−11 x1) > y∗∗1 (1 − δt−11 x1).

Some computation shows that y∗1(1− v) ≤ y∗∗1 (1− v) requires

v ≥ k1(1− δ2z∗2)

1 + k1 + k2
.

Since δt−11 x1 <
1−δ2z∗2
1+k2

, the contradiction would obtain if

1− δ2z∗2
1 + k2

<
k1(1− δ2z∗2)

1 + k1 + k2
.

The inequality indeed follows from the assumption of k2(k1 − 1) > 1. This

concludes the proof for i = 1. A symmetric argument works for i = 2.

Proof for Proposition 3.

Let OSPEd = {(z, t) ∈ OSPE|t > 1} collect all SPE outcomes that feature

delay and D = {(w1, w2)|wi = δtzi for i ∈ {1, 2} and (z, t) ∈ OSPEd} be the

set of continuation payoffs such SPE with delay generate. Let wmi = infw∈D wi.

Recall that B∗ = {z|(z, t) ∈ OSPE}. Let z∗i = supz∈B∗ zi.

I first show that there cannot be a deviation ẑ2 > 1− z∗1 such that

1− z∗1 − k2(z∗1 + ẑ2 − 1) < min{wm2 , δ2(1− z∗1)} (16)

and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δ1z
∗
1 . (17)

The right hand side (RHS) of inequality 16 gives the worst SPE continuation

payoff for player 2, while the RHS of inequality 17 gives the best SPE contin-

uation payoff for player 1. The existence of such a ẑ2 means that player 2 has

a profitable deviation from the efficient profile (z∗1 , 1 − z∗1). This is because

following such a deviation, in the resulting concession game player 2’s choice

of S strictly dominates A, irrespective of the SPE continuation payoff, due to

inequality 16. Further, due to inequality 17, player 1 strictly prefers A over

S, in the face of 2 choosing S. In other words, following the deviation to ẑ2,
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the dominance solvable outcome of the concession game is (A, S) and brings

2 the higher payoff of ẑ2, no matter the continuation SPE profile. Such a ẑ2

rules out (z∗1 , 1− z∗1) ∈ B∗ and by continuity rules out z∗1 = supz∈B∗ z1.

Inequality 16 simplifies to

ẑ2 >
(1− z∗1)(1 + k2)−min{wm2 , δ2(1− z∗1)}

k2

while 17 simplifies to

ẑ2 < 1− (k1 + δ1)z
∗
1

1 + k1
.

Therefore z∗1 = supz∈B∗ z1 requires

(1− z∗1)(1 + k2)−min{wm2 , δ2(1− z∗1)}
k2

≥ 1− (k1 + δ1)z
∗
1

1 + k1
.

By proposition 2, wm2 ≥
1−δ1z∗1
1+k1

. Then the relevant inequality is

(1− z∗1)(1 + k2)−min{1−δ1z
∗
1

1+k1
, δ2(1− z∗1)}

k2
≥ 1− (k1 + δ1)z

∗
1

1 + k1
.

There are two cases to consider. If
1−δ1z∗1
1+k1

≥ δ2(1− z∗1) then the inequality

reduces to
z∗1

1− z∗1
≤ 1− δ2

1− δ1
1 + k1
k2

. (18)

Alternatively, if
1−δ1z∗1
1+k1

< δ2(1− z∗1) then the inequality reduces to

z∗1
1− z∗1

<
k1

(1 + k2)(1− δ1)
.

Now,
1−δ1z∗1
1+k1

≥ δ2(1− z∗1) itself simplifies to

z∗1
1− z∗1

≥ δ2(1 + k1)− 1

1− δ1
.
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Since in this case, inequality 18 emerges, it must be that

1− δ2
1− δ1

1 + k1
k2

≥ δ2(1 + k1)− 1

1− δ1
.

It turns out that this inequality is equivalent to

1− δ2
1− δ1

1 + k1
k2

≥ k1
(1 + k2)(1− δ1)

.

This generates the required expression

z∗1
1− z∗1

≤ max

{
1− δ2
1− δ1

1 + k1
k2

,
k1

(1 + k2)(1− δ1)

}
.

Lemma 4 The strategy profile σ described in Construction 1 is an SPE if

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Proof. The payoff to player i from σ at any subgame g(h) with h ∈ H is

simply zi. A lower demand would only lower the payoff. A higher demand

would lead to either (S, S) and a continuation payoff of δizi or (Ai, S−i) leading

to a payoff strictly lower than zi due to the resulting concession cost. Therefore

no player has an incentive to deviate in the demand stage of any period.

To verify subgame perfection, therefore, it is sufficient to show that in the

concession stage game following an incompatible demand profile (ẑi, z−i), if

(S, S) is not a Nash equilibrium then (Ai, S−i) is. To establish this result, in

turn, it is sufficient to show the following,

1− ẑi − k−i(ẑi + z−i − 1) > δ−iz−i ⇒ 1− z−i − ki(ẑi + z−i − 1) > δizi

which is equivalent to

1− δ−iz−i + k−iz−i
1 + k−i

> ẑi ⇒
(1− z−i)(1 + ki − δi)

ki
> ẑi.
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A sufficient condition for this is simply

(1− z−i)(1 + ki − δi)
ki

> 1− δ−iz−i + k−iz−i
1 + k−i

⇔ (1− z−i)(1− δi)
ki

>
z−i(1− δ−i)

1 + k−i

⇔ 1− δi
1− δ−i

1 + k−i
ki

>
z−i

1− z−i
.

Requiring the above inequalities to hold for i ∈ {1, 2} make them equivalent

to
1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Proof for Proposition 4.

The set E1 is a set of SPE outcomes, by definition. This set is fully char-

acterized in proposition 5. Further, by lemma 4, any element in E1 is the

outcome of an SPE strategy profile described in construction 1. So to prove

the proposition by induction it suffices to show that for any t− 1 ∈ N, if every

outcome in Et−1 is an SPE outcome then the same holds for Et.

Fix some t − 1 ∈ N such that every outcome in Et−1 is an SPE outcome.

If Et = Et−1, then the result follows. Suppose instead that Et−1 6= Et. ζt is

simply the set of continuation payoffs generated by the outcomes in Et−1. Fix

some w ∈ ζt and some z ∈ Zt
w. I will now describe an SPE profile in which z

is the compatible demand profile chosen in the first period.

Construction 2 In period 1 player i demands zi, for i ∈ {1, 2}. If bargaining

is unresolved in period 1 then from period 2 onwards the players play the SPE

strategy profile that yields the continuation profile w. In period 1, if player i

deviates to a higher demand, z̃i > zi, then in the concession stage game (S, S)

is played if it is a Nash equilibrium, and otherwise (Ai, S−i) is played. For all

other h ∈ H1′ some Nash equilibrium of the concession stage game is played.

To show that this construction is an SPE it suffices to prove two claims. First,
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zi ≥ wi for i ∈ {1, 2}, in that neither player wishes to deviate in the first period

in a way that leads to the continuation payoff w. Second, in the concession

stage game following the deviation z̃i > zi, it is true that when (S, S) is not a

Nash equilibrium then (Ai, S−i) is. Indeed if these two claims were true, then

no player i would wish to deviate from the compatible demand profile z in

the first period. This is because such deviations would either bring i a lower

payoff due to lower demand by her, or in the case of a higher and therefore

incompatible demand by her, would bring a lower payoff of wi or the lower

payoff from backing down in the concession stage.

Recall that ytw is the solution to the equations

1− y2 − k1(y1 + y2 − 1) = w1

1− y1 − k2(y1 + y2 − 1) = w2

(19)

and must therefore satisfy ytw1 + ytw2 > 1. To see why, add the two equations

in 19 to get 1 + (1 − y1 − y2)(1 + k1 + k2) = w1 + w2. If y1 + y2 ≤ 1 then

w1 +w2 ≥ 1, a contradiction, since w is the continuation payoff and δi < 1 for

i ∈ {1, 2}. Since ytw1 + ytw2 > 1, it follows that wi < 1 − ytw−i from 19. Also,

z−i ≤ ytw−i, by construction, which means zi ≥ 1 − ytw−i. This establishes the

first claim

zi ≥ 1− ytw−i > wi.

To establish the second claim it is sufficient to show that

1− z̃i − k−i(z̃i + z−i − 1) > w−i ⇒ 1− z−i − ki(z̃i + z−i − 1) > wi.

The equation 1− y−i − ki(yi + y−i − 1) = wi has a slope ∂yi
∂y−i

< −1 while the

equation 1 − yi − k−i(yi + y−i − 1) = w−i has a slope −1 < ∂yi
∂y−i

< 0. This

means that for all values of y−i less than at the point of intersection ytw−i, the line

1−y−i−ki(yi+y−i−1) = wi lies above the line 1−yi−k−i(yi+y−i−1) = w−i.

Since z−i ≤ ytw−i by construction, if 1 − z̃i − k−i(z̃i + z−i − 1) > w−i then it

must be that (z̃i, z−i) lies below the line 1− yi− k−i(yi + y−i− 1) = w−i. This

in turn implies that (z̃i, z−i) lies below the line 1− y−i − ki(yi + y−i − 1) = wi
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and therefore, 1− z−i − ki(z̃i + z−i − 1) > wi, as required.

This concludes the argument showing that construction 2 is an SPE. It has

therefore been shown that for all z ∈ Zt there exists an SPE in which z is the

compatible demand profile in the first period.

Fix some (y, n) ∈ Ẽt. Since y ∈ Zt, by the argument above there exists an

SPE strategy profile with the compatible demand profile y in the first period.

If n = 1 then it has already been established that (y, n) is an SPE outcome.

Suppose n > 1. Consider the following construction with outcome, (y, n).

Construction 3 For periods 1 to n−1, both players demand 1 followed by S in

the concession stage. From period n onwards, they play the SPE strategy profile

that yields the outcome (y, 1). For any history h ∈ H t′, where 1 ≤ t ≤ n− 1,

they play some Nash equilibrium of the corresponding concession stage game.

To prove that this strategy profile is an SPE it is sufficient to show that neither

player wishes to deviate from their demand of 1 in periods 1 to n−1. Consider

period 1. The only way player i can change the outcome by deviating at the

demand stage is by choosing a demand that is either compatible or on that

forces −i to concede in the subsequent concession stage. A compatible demand

brings a payoff of 0 and therefore cannot be a profitable deviation. Since −i is

demanding 1, to make her prefer A to S in the concession stage, i must make

a demand z̃i such that

1− z̃i − k−i(z̃i + 1− 1) > δn−1−i y−i.

This simplifies to

z̃i <
1− δn−1−i y−i

1 + k−i
.

Such a deviation brings i a payoff of z̃i. To be profitable this requires z̃i >

δn−1i yi and therefore

δn−1i yi <
1− δn−1−i y−i

1 + k−i
(20)

which simplifies to 1− δn−1i yi − δn−1−i y−i > k−iδ
n−1
i yi. But this inequality does

not hold since (y, n) ∈ Ẽt and therefore satisfies inequality 8. Therefore no
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profitable deviation exists for i in period 1.

Finally notice that for a similar deviation in any period 1 ≤ t ≤ n − 1 to

be profitable requires, by a symmetric argument,

δt−1i yi <
1− δt−1−i y−i

1 + k−i
.

Since this inequality does not hold for t = n as in 20, it does not hold for

the other values either. This concludes the proof of construction 3 satisfying

subgame perfection. Therefore every outcome in Ẽt is an SPE outcome. Since

Et = Et−1 ∪ Ẽt, this concludes the proof.

Proof for Proposition 5. Lemma 3 above establishes that, even in the

general model, compatible demand profiles in which one player demands the

entire surplus cannot arise in an SPE. This combined with lemma 1 implies

that if (z, t) is the outcome of an SPE then d(z) = 0 and zi ∈ (0, 1) for

i ∈ {1, 2}. This in turn means that if σ is a renegotiation-proof SPE with

outcome (z, t) then t = 1. To see why, suppose instead that t > 1. Then

ψ(σ;h0) = (δt−11 z1, δ
t−1
2 z2)� (z1, z2) = ψ(σ, h̃t),

where h̃t is the history that occurs on the equilibrium path with the t−1 peri-

ods of incompatible demands with neither player conceding in the subsequent

concession games. Therefore by proposition 1, inequality 9 is a necessary con-

dition for renegotiation-proof SPE outcomes. Lemma 4 establishes sufficiency

by constructing stationary SPE strategies with outcome (z, t) for any z satis-

fying inequality 9 and t = 1. Fix one such z and its corresponding stationary

SPE strategy profile, σ. Notice that σ satisfies renegotiation-proofness since

by construction ψ(σ;h) = (z1, z2) for all h ∈ H.

Lemma 5 If (y,m) is the outcome of a Markov perfect equilibrium and δj ≥
δ−j for some j ∈ {1, 2}, then

m− 1 ≤

⌊
ln k1+k2

k1+k2+k1k2

ln δj

⌋
.
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Proof. Suppose σ is a Markov perfect equilibrium with outcome (y,m) that

features delay and so m > 1. Consider the demand profile z1 = σ(h0), which

must be incompatible, d(z1) > 0. Let the continuation payoff profile following

such demands be (w1, w2), which results from the outcome (y,m) of the sub-

game g(h0). In particular, wi = δm−1i yi. Further y is an exactly compatible

demand profile by lemma 1, as in y1 +y2 = 1. w1 +w2 < 1 follows from m > 1.

First note that to be in equilibrium requires z1i ≥ 1 − w−i for i ∈ {1, 2}.
Otherwise player −i would be strictly better off making the compatible de-

mand 1− z1i in period t. Set D = {z|zi ≥ 1− w−i,∀i ∈ {1, 2}}.
Next, observe that the equation 1− yi− k−i(y1 + y2− 1) = w−i is satisfied

at y = (1 − w−i, w−i). It follows that if yi ≥ 1 − w−i and y−i > w−i then

1 − yi − k−i(y1 + y2 − 1) < w−i. Therefore for any z ∈ D and any ẑ−i > w−i

the following inequality holds

1− zi − k−i(zi + ẑ−i − 1) < w−i.

This implies that for any incompatible profile in D played in period 1, player

−i can deviate to a demand arbitrarily close to w−i and in the resulting con-

cession stage game her action S would strictly dominate A. If following such

a deviation player i preferred A to S, then −i would indeed be better off with

the deviation since she would obtain a higher payoff than w−i.

For player i to prefer A to S following an incompatible demand profile y

requires 1− y−i− ki(y1 + y2− 1) > wi. If this inequality is satisfied for y with

yi = 1 then it will be satisfied for all (xi, y−i) with 1−w−i ≤ xi ≤ 1. So if the

inequality

1− w−i − ki(1 + w−i − 1) > wi (21)

holds then for any incompatible profile in D, player −i can deviate to an

appropriate demand greater than w−i such that the unique dominance solvable

outcome in the concession stage has i playing A and−i playing S, with a payoff

greater than w−i to −i. So for D to contain some incompatible demand profile

that can support the delay in period 1 under σ with continuation payoff w
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requires
1

ki
≤ w−i

1− w1 − w2

, ∀i ∈ {1, 2}.

A necessary condition for this is

1

k1
+

1

k2
≤ w1 + w2

1− w1 − w2

,

which simplifies to w1 + w2 ≥ (k1 + k2)/(k1 + k2 + k1k2). Since δj ≥ δ−j, it

follows that δm−1j ≥ (k1 + k2)/(k1 + k2 + k1k2) is necessary in turn. The result

follows.

Lemma 6 If δj ≥ δ−j then

1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j

.

Proof.

1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j
⇔

1− δn+1
−j

1− δn−j
≤

1− δn+1
j

1− δnj

⇔
1 + δ−j + δ2−j + . . .+ δn−j

1 + δ−j + δ2−j + . . .+ δn−1−j
≤

1 + δj + δ2j + . . .+ δnj

1 + δj + δ2j + . . .+ δn−1j

⇔
δn−j

1 + δ−j + δ2−j + . . .+ δn−1−j
≤

δnj

1 + δj + δ2j + . . .+ δn−1j

⇔ 1

δnj
+

1

δn−1j

+ . . .+
1

δj
≤ 1

δn−j
+

1

δn−1−j
+ . . .+

1

δ−j

⇔ δj ≥ δ−j.

Proof for Proposition 6. Let CM denote the set of compatible demand pro-

files that can arise in some Markov perfect equilibrium. Let z∗i = supz∈CM zi.

First I show that there cannot exist a ẑ2 > 1− z∗1 such that

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn2 (1− z∗1) (22)
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and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δn1 z
∗
1 (23)

for all 1 ≤ n ≤ n∗ where n∗ − 1 =

⌊
ln

k1+k2
k1+k2+k1k2

ln δj

⌋
. Consider a Markov perfect

equilibrium in which (z∗1 , 1− z∗1) is agreed upon in the first period. The equi-

librium must specify a continuation payoff profile if the current period instead

ended in an impasse. This must be some fixed (δnz1, δ
nz2) where z ∈ CM and,

by lemma 5, 1 ≤ n ≤ n∗. It is fixed in the sense that the payoff is independent

of the exact incompatible demands made, due to Markov perfection. If there

exists a ẑ2 that satisfies inequalities 22 and 23 for all 1 ≤ n ≤ n∗ then it must

also satisfy

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn2 (1− z1) and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δn1 z1

for any such z ∈ CM and 1 ≤ n ≤ n∗, since δn1 z1 ≤ δn1 z
∗
1 and δn2 (1 −

z1) ≥ δn2 (1− z∗1). This means that following the incompatible demand profile

(z∗1 , ẑ2) the (unique) dominance solvable outcome in the concession game is

(Accept, Stick), bringing player 2 the higher payoff of ẑ2. So in this case, the

compatible demand profile (z∗1 , 1− z∗1) cannot arise in a Markov perfect equi-

librium. The same argument applies to compatible demand profiles arbitrarily

close to (z∗1 , 1− z∗1). Therefore, it must be that no such ẑ2 > 1− z∗1 exists that

satisfies inequalities 22 and 23 for all 1 ≤ n ≤ n∗.

Inequalities 22 and 23 simplify to

ẑ2 >
(1− z∗1)(1 + k2 − δn2 )

k2
, and

ẑ2 < 1− (k1 + δn1 )z∗1
1 + k1

.

Therefore a ẑ2 satisfying inequalities 22 and 23 for a given 1 ≤ n ≤ n∗ cannot
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exist only if

(1− z∗1)(1 + k2 − δn2 )

k2
≥ 1− (k1 + δn1 )z∗1

1 + k1

⇒(1− z∗1)(1− δn2 )

k2
≥ z∗1(1− δn1 )

1 + k1

⇒1− δn1
1− δn2

k2
1 + k1

≤ 1− z∗1
z∗1

.

Finally then a ẑ2 satisfying inequalities 22 and 23 for all 1 ≤ n ≤ n∗ cannot

exist only if

min
n≤n∗

1− δn1
1− δn2

k2
1 + k1

≤ 1− z∗1
z∗1

.

A symmetric argument establishes

min
n≤n∗

1− δn2
1− δn1

k1
1 + k2

≤ 1− z∗2
z∗2

⇒ z∗2
1− z∗2

≤ max
n≤n∗

1− δn1
1− δn2

1 + k2
k1

.

Since z ∈ CM implies that (1− z∗1)/z∗1 ≤ z2/z1 ≤ z∗2/(1− z∗2), it follows that

min
n≤n∗

1− δn1
1− δn2

k2
1 + k1

≤ z2
z1
≤ max

n≤n∗
1− δn1
1− δn2

1 + k2
k1

.

By lemma 6, if δ1 ≥ δ2 then

1− δn1
1− δn2

≤ 1− δn+1
1

1− δn+1
2

.

So if δ1 ≥ δ2 then

min
n≤n∗

1− δn1
1− δn2

=
1− δ1
1− δ2

and max
n≤n∗

1− δn1
1− δn2

=
1− δn∗1
1− δn∗2

and the result follows. A symmetric argument works for δ2 ≥ δ1.

Proof for Proposition 7. Let σ be the Markov perfect equilibrium with

48



the outcome (y,m). Let zt = σ(ht−1) for ht−1 ∈ H and 1 ≤ t ≤ m − 1. By

assumption zt is an incompatible demand profile. In the subgame g(ht−1),

player i’s payoff from following σ is δm−ti yi. Then it must be that zti ≥ 1 −
δm−t−i y−i. Otherwise player −i would do better by making the compatible

demand 1− zti . Set D = {z|zi ≥ 1− δm−t−i y−i}. So zt ∈ D.

Next, there cannot exist ẑ−i > δm−t−i y−i such that

1− zti − k−i(zti + ẑ−i − 1) < δm−t−i y−i

and

1− ẑ−i − ki(zti + ẑ−i − 1) > δm−ti yi.

Otherwise, player −i in period t would deviate to the incompatible demand

ẑ−i and the dominance solvable outcome of the resulting concession game

would be (Ai, S−i) with the higher payoff of ẑ−i. It is already shown in the

proof for lemma 5 that for all z ∈ D there exists ẑ−i > δm−t−i y−i such that

1− zi − k−i(zi + ẑ−i − 1) < δm−t−i y−i.

Finally, requiring 1− ẑ−i − ki(zti + ẑ−i − 1) ≥ δm−ti yi to hold for all ẑ−i >

δm−t−i y−i implies that

zti ≥
(1− δm−t−i y−i)(1 + ki)− δm−ti yi

ki
.

Proof for Proposition 8. A stationary MPE must feature either immediate

agreement or perpetual delay. Perpetual delay is ruled out since either player

would deviate in the first period to making an arbitrarily small demand. This

would either lead to a compatible demand profile, or if incompatible force the

opponent to concede. Therefore stationary MPEs feature no delay. The result

then follows from lemma 4 and proposition 1.

Lemma 7 For i ∈ {1, 2} and n∗ ∈ N, following equations 10, 11 and 12,

(a) z̃n
∗
−i is a well defined function with −1 <

∂z̃n
∗
−i

∂zi
< 0,

(b) ˜̃zn
∗
−i is a well defined function with

∂ ˜̃zn
∗
−i

∂zi
< −1,
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(c) zMn∗
i is well defined.

Proof. (a) Since c−i is unbounded above, z̃n
∗
−i is indeed well defined for all

zi ∈ [0, 1]. Further by the implicit function theorem it is a decreasing function

with slope
∂z̃n

∗
−i

∂zi
= −

(1− δn∗+1
−i )u′−i(1− zi)

c′−i(zi + z̃n
∗
−i − 1)

− 1 < −1.

(b) Again by the implicit function theorem, ˜̃zn
∗
−i is well defined, decreasing and

with slope

∂ ˜̃zn
∗
−i(zi)

∂zi
= −

δiu
′
i(zi) + c′i(zi + ˜̃zn

∗
−i − 1)

u′i(1− ˜̃zn
∗
−i) + c′i(zi + ˜̃zn

∗
−i − 1)

> −1

by the concavity of ui.

(c) Note that z̃n
∗
−i(1) = 0 while ˜̃zn

∗
−i(1) > 0. Also, z̃n

∗
−i(0) > 1 while ˜̃zn

∗
−i(0) = 1.

Therefore the function z̃n
∗
−i(zi)− ˜̃zn

∗
−i(zi) is positive at zi = 0, negative at zi = 1,

continuous and (from the slope inequalities above) strictly decreasing over the

interval [0, 1]. By the intermediate value theorem it follows that zMn∗
i is well

defined and unique.

Proof for Proposition 9. Let zn
∗

i = supz∈Bn∗ zi. Then there cannot exist

a deviation ẑ2 > 1− zn∗1 such that

u2(1− zn
∗

1 )− c2(zn
∗

1 + ẑ2 − 1) < δn
∗+1

2 u2(1− zn
∗

1 ) (24)

and

u1(1− ẑ2)− c1(zn
∗

1 + ẑ2 − 1) > δ1u1(z
n∗

1 ). (25)

To see why, suppose that σ(h0) = (zn
∗

1 , 1−zn
∗

1 ) and there exists ẑ2 that satisfies

the inequalities above. Then it must be that

u2(1− zn
∗

1 )− c2(zn
∗

1 + ẑ2 − 1) < δt+1
2 u2(z2)

and

u1(1− ẑ2)− c1(zn
∗

1 + ẑ2 − 1) > δt+1
1 u1(z1)
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for any outcome (u(z), t) of an SPE with maximum delay n∗, since for all such

(u(z), t), it follows that z1 ≤ zn
∗

1 and z2 = 1−z1 > 1−zn∗1 and 1 ≤ t+1 ≤ n∗+1.

In other words, irrespective of the continuation strategy profile, following such

a deviation, in the resulting concession stage game, the dominance solvable

outcome would be (A, S), giving player 2 the payoff u2(ẑ2) which is strictly

greater than u2(1 − zn
∗

1 ). Therefore, if such a deviation were to exist then

(zn
∗

1 , 1−zn
∗

1 ) 6∈ Bn∗ . The same argument ensures that z 6∈ Bn∗ for z arbitrarily

close to (zn
∗

1 , 1− zn
∗

1 ), which in turn contradicts zn
∗

1 = supz∈Bn∗ z1.

Lemma 7 shows that z̃n
∗

2 and ˜̃zn
∗

2 are well defined functions with z̃n
∗

2 (z1)−
˜̃zn
∗

2 (z1) strictly decreasing over the interval [0, 1] and equal to zero at zMn∗
1 .

Now, it cannot be that ˜̃zn
∗

2 (zn
∗

1 ) > z̃n
∗

2 (zn
∗

1 ) since then a deviation that satisfies

inequalities 24 and 25 would exist; any ẑ2 ∈ (z̃n
∗

2 (zn
∗

1 ), ˜̃zn
∗

2 (zn
∗

1 )) would suffice.

Since ˜̃zn
∗

2 (z1) > z̃n
∗

2 (z1) for any z1 > zMn∗
1 , it must be that zn

∗
1 ≤ zMn∗

1 . A

symmetric argument establishes that zn
∗

2 ≤ zMn∗
2 .

Proof for Proposition 10.

Necessity

By lemma 1, any SPE at any history h ∈ H will involve exactly compatible

demands or incompatible ones followed by (S, S). SPE that further satisfy

renegotiation-proofness cannot permit delay. To see this, consider a strategy

profile, σ with outcome (y, t) where t > 1. By lemma 1, yi = ui(zi) with

d(z) = 0. By lemma 3, yi > 0. Now, c(σ;h0) = (δt1y1, δ
t
2y2) while c(σ;ht) =

(y1, y2). Since c(σ;ht)� c(σ;h0), σ is not renegotiation-proof. This concludes

the argument for why t = 1 if (y, t) is the outcome of a renegotiation-proof

SPE in the general model. The rest follows from Proposition 9.

Sufficiency

Fix some z such that d(z) = 0 and zi ≤ zMi for i ∈ {1, 2}. Consider the

following stationary strategy profile, σ. For all ht ∈ H, σi(h
t) = zi. If player i

in period t deviates to making a higher demand, ẑi > zi, then in the concession

stage game (S, S) is played if it is a Nash equilibrium and otherwise (Ai, S−i)

is played. For all other h ∈ H ′ some pure strategy Nash equilibrium of the

concession stage game is played.

Given the strategy profile σ, it is clear that making a lower demand at
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any period is never profitable. Making a higher demand for player i also

yields her a lower payoff, since it either leads to (S, S) in the concession game

and a continuation payoff of δiui(zi) or (Ai, S−i) with a payoff strictly less

than ui(zi) due to the concession cost. Hence no profitable deviation exists

in any demand stage. To verify subgame perfection, therefore, it is sufficient

to verify that following an incompatible demand profile (zi, ẑ−i), if (S, S) is

not a Nash equilibrium then (Si, A−i) is. For this it is sufficient to show that

z̃0−i(zi) ≥ ˜̃z0−i(zi).

Recall that z̃0−i(zi) as defined in equation 10, with n∗ = 0, corresponds to

the smallest demand by −i that leads to incompatibility and ensures that −i
prefers S over A in the subsequent concession stage game, assuming that in

the next period the compatible profile z is announced. ˜̃z0−i(zi), as defined in

equation 11, with n∗ = 0, in turn is the largest demand by −i that leads to

incompatibility and ensures that in the subsequent concession game, i prefers

(Ai, S−i) to (S, S), assuming that in the next period z is announced. So if

z̃0−i(zi) ≥ ˜̃z0−i(zi) then following any incompatible demand ẑ−i, if (Ai, S−i) is a

Nash equilibrium, then it must be that ẑ−i ≤ ˜̃z0−i(zi) ≤ z̃0−i(zi) and therefore

(Si, A−i) is a Nash equilibrium too. Since (A,A) is never a Nash equilibrium,

this shows that with z̃0−i(zi) ≥ ˜̃z0−i(zi) if (S, S) is not a Nash equilibrium then

(Si, A−i) must be.

Finally observe that z̃0−i(zi) ≥ ˜̃z0−i(zi) since zi ≤ zMi .

Proof for Proposition 11. It follows from proposition 10 that

ξ(gc
n

) =

{
y = u(z)

∣∣∣∣1− zMn
1

zMn
1

≤ z2
z1
≤ zMn

2

1− zMn
2

and d(z) = 0

}
,

where the incompatible demand profile (zMn
i , ẑMn

−i ) for i ∈ {1, 2} is character-

ized by the equations,

u−i(1− zMn
i )− cn−i(zMn

i + ẑn−i(z
Mn
i )− 1) = δ−iu−i(1− zMn

i ) (26)

ui(1− ẑn−i(zMn
i ))− cni (zMn

i + ẑn−i(z
Mn
i )− 1) = δiui(z

Mn
i ). (27)

Set zM∗i = limn→∞ z
Mn
i . Notice that since u−i is bounded above and cn

′
−i(0+)→
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∞ as n → ∞, it follows from equation 26 that limn→∞ ẑ−i(z
Mn
i ) = 1 −

limn→∞ z
Mn
i = 1− zM∗i .

Now equations 26 and 27 together imply

(1− δ−i)u−i(1− zMn
i )

ui(1− ẑn−i(zMn
i ))− δiui(zMn

i )
=
cn−i(z

Mn
i + ẑ−i(z

Mn
i )− 1)

cni (zMn
i + ẑn−i(z

Mn
i )− 1)

.

Taking limits on both sides of this equation as n→∞ gives

(1− δ−i)u−i(1− zM∗i )

(1− δi)ui(zM∗i )
= lim

n→∞

cn−i(z
Mn
i + ẑ−i(z

Mn
i )− 1)

cni (zMn
i + ẑn−i(z

Mn
i )− 1)

.

The right hand side is equal to γ for i = 2 and 1/γ for i = 1. Therefore,

(1− δ2)u2(1− zM∗1 )

(1− δ1)u1(zM∗1 )
=

1

γ
and

(1− δ1)u1(1− zM∗2 )

(1− δ2)u2(zM∗2 )
= γ.

Now y ∈ ξ∗γ(u) implies that y = u(z) such that d(z) = 0 and

u2(1− zM∗1 )

u1(zM∗1 )
≤ u2(z2)

u1(z1)
≤ u2(z

M∗
2 )

u1(1− zM∗2 )

⇔ 1− δ1
1− δ2

1

γ
≤ u2(z2)

u1(z1)
≤ 1− δ1

1− δ2
1

γ
.
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